Problem 1.25

Spiraling particle

A particle moves outward along a spiral. Its trajectory is given by $r=A \theta$, where A is a constant. $A=(1 / \pi) \mathrm{m} / \mathrm{rad} . \theta$ increases in time according to $\theta=\alpha t^{2} / 2$, where α is a constant.
(a) Sketch the motion, and indicate the approximate velocity and acceleration at a few points.
(b) Show that the radial acceleration is zero when $\theta=1 / \sqrt{2} \mathrm{rad}$.
(c) At what angles do the radial and tangential accelerations have equal magnitude?

Solution

We have

$$
r(\theta)=\frac{\theta}{\pi} .
$$

Substitute $\theta=\alpha t^{2} / 2$ to make r a function of time.

$$
r(t)=\frac{\alpha t^{2}}{2 \pi}
$$

As a result, the derivatives with respect to time are

$$
\begin{array}{lll}
r=\frac{\alpha t^{2}}{2 \pi} & \rightarrow \quad \dot{r}=\frac{\alpha t}{\pi} \quad & \rightarrow \quad \ddot{r}=\frac{\alpha}{\pi} \\
\theta=\frac{\alpha t^{2}}{2} \quad & \rightarrow \quad \dot{\theta}=\alpha t \quad & \rightarrow \quad \ddot{\theta}=\alpha .
\end{array}
$$

In polar coordinates the velocity vector is

$$
\begin{aligned}
\mathbf{v} & =\dot{r} \hat{\boldsymbol{r}}+r \dot{\theta} \hat{\boldsymbol{\theta}} \\
& =\frac{\alpha t}{\pi} \hat{\boldsymbol{r}}+\frac{\alpha t^{2}}{2 \pi} \cdot \alpha t \hat{\boldsymbol{\theta}} \\
& =\frac{\alpha t}{\pi} \hat{\boldsymbol{r}}+\frac{\alpha^{2} t^{3}}{2 \pi} \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

In polar coordinates the acceleration vector is

$$
\begin{aligned}
\mathbf{a} & =\left(\ddot{\boldsymbol{r}}-r \dot{\theta}^{2}\right) \hat{\boldsymbol{r}}+(r \ddot{\theta}+2 \dot{\boldsymbol{r}} \dot{\theta}) \hat{\boldsymbol{\theta}} \\
& =\left[\frac{\alpha}{\pi}-\frac{\alpha t^{2}}{2 \pi}(\alpha t)^{2}\right] \hat{\boldsymbol{r}}+\left(\frac{\alpha t^{2}}{2 \pi} \cdot \alpha+2 \frac{\alpha t}{\pi} \cdot \alpha t\right) \hat{\boldsymbol{\theta}} \\
& =\left(\frac{\alpha}{\pi}-\frac{\alpha^{3} t^{4}}{2 \pi}\right) \hat{\boldsymbol{r}}+\left(\frac{\alpha^{2} t^{2}}{2 \pi}+\frac{2 \alpha^{2} t^{2}}{\pi}\right) \hat{\boldsymbol{\theta}} \\
& =\frac{\alpha}{2 \pi}\left(2-\alpha^{2} t^{4}\right) \hat{\boldsymbol{r}}+\frac{5 \alpha^{2} t^{2}}{2 \pi} \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

Part (a)

Figure 1: Plot of the particle's spiral path for $\alpha=1$ and $0<t<2 \pi$.
Since $\theta=\alpha t^{2} / 2=t^{2} / 2$, the times at each point are

$$
\begin{array}{llll}
\text { At point } A: & \frac{\pi}{2}=\frac{t_{A}^{2}}{2} & \rightarrow & t_{A}=\sqrt{\pi} \\
\text { At point } B: & \pi=\frac{t_{B}^{2}}{2} & \rightarrow & t_{B}=\sqrt{2 \pi} \\
\text { At point } C: & \frac{3 \pi}{2}=\frac{t_{C}^{2}}{2} & \rightarrow & t_{C}=\sqrt{3 \pi} \\
\text { At point } D: & 2 \pi=\frac{t_{D}^{2}}{2} & \rightarrow & t_{D}=\sqrt{4 \pi} .
\end{array}
$$

Therefore,

$$
\begin{aligned}
& \text { At point } A:\left\{\begin{array}{l}
\mathbf{v}\left(t_{A}\right) \approx 0.56 \hat{\boldsymbol{r}}+0.89 \hat{\boldsymbol{\theta}} \\
\mathbf{a}\left(t_{A}\right) \approx-1.3 \hat{\boldsymbol{r}}+2.5 \hat{\boldsymbol{\theta}}
\end{array}\right. \\
& \text { At point } B: \quad\left\{\begin{array}{l}
\mathbf{v}\left(t_{B}\right) \approx 0.80 \hat{\boldsymbol{r}}+2.5 \hat{\boldsymbol{\theta}} \\
\mathbf{a}\left(t_{B}\right) \approx-6.0 \hat{\boldsymbol{r}}+5.0 \hat{\boldsymbol{\theta}}
\end{array}\right. \\
& \text { At point } C: \quad\left\{\begin{array}{l}
\mathbf{v}\left(t_{C}\right) \approx 0.98 \hat{\boldsymbol{r}}+4.6 \hat{\boldsymbol{\theta}} \\
\mathbf{a}\left(t_{C}\right) \approx-14 \hat{\boldsymbol{r}}+7.5 \hat{\boldsymbol{\theta}}
\end{array}\right. \\
& \text { At point } D: \quad\left\{\begin{array}{l}
\mathbf{v}\left(t_{D}\right) \approx 1.1 \hat{\boldsymbol{r}}+7.1 \hat{\boldsymbol{\theta}} \\
\mathbf{a}\left(t_{D}\right) \approx-25 \hat{\boldsymbol{r}}+10 \hat{\boldsymbol{\theta}}
\end{array}\right.
\end{aligned}
$$

Part (b)

The radial acceleration is the r-component of acceleration. Setting it equal to zero gives us

$$
\frac{\alpha}{2 \pi}\left(2-\alpha^{2} t^{4}\right)=0 .
$$

Solve this for t^{2}.

$$
\begin{gathered}
2-\alpha^{2} t^{4}=0 \\
t^{2}=\frac{\sqrt{2}}{\alpha}
\end{gathered}
$$

This corresponds to a θ value of

$$
\begin{aligned}
\theta & =\frac{\alpha t^{2}}{2} \\
& =\frac{\alpha}{2} \cdot \frac{\sqrt{2}}{\alpha} .
\end{aligned}
$$

Therefore,

$$
\theta=\frac{1}{\sqrt{2}} \mathrm{rad}
$$

Part (c)

If the radial and tangential accelerations have equal magnitudes, then

$$
\left|\frac{\alpha}{2 \pi}\left(2-\alpha^{2} t^{4}\right)\right|=\left|\frac{5 \alpha^{2} t^{2}}{2 \pi}\right| .
$$

This equation is equivalent to these two.

$$
\begin{array}{rcr}
\frac{\alpha}{2 \pi}\left(2-\alpha^{2} t^{4}\right)=\frac{5 \alpha^{2} t^{2}}{2 \pi} & \text { or } & \frac{\alpha}{2 \pi}\left(2-\alpha^{2} t^{4}\right)=-\frac{5 \alpha^{2} t^{2}}{2 \pi} \\
2-\alpha^{2} t^{4}=5 \alpha t^{2} & \text { or } & 2-\alpha^{2} t^{4}=-5 \alpha t^{2} \\
\alpha^{2} t^{4}+5 \alpha t^{2}-2=0 & \text { or } & \alpha^{2} t^{4}-5 \alpha t^{2}-2=0 \\
\left(\alpha t^{2}\right)^{2}+5\left(\alpha t^{2}\right)-2=0 & \text { or } & \left(\alpha t^{2}\right)^{2}-5\left(\alpha t^{2}\right)-2=0
\end{array}
$$

Use the quadratic formula to solve for αt^{2}.

$$
\begin{array}{rlr}
\alpha t^{2}=\frac{-5 \pm \sqrt{25+4 \cdot 2}}{2} & \text { or } & \alpha t^{2}=\frac{5 \pm \sqrt{25+4 \cdot 2}}{2} \\
t^{2}=\frac{-5 \pm \sqrt{33}}{2 \alpha} & \text { or } & t^{2}=\frac{5 \pm \sqrt{33}}{2 \alpha}
\end{array}
$$

Since t^{2} has to be positive, we choose the plus sign on both of them.

$$
t^{2}=\frac{-5+\sqrt{33}}{2 \alpha} \quad \text { or } \quad t^{2}=\frac{5+\sqrt{33}}{2 \alpha}
$$

There are two values of t^{2}, so there are two values of θ.

$$
\theta=\frac{\alpha t^{2}}{2}=\frac{\alpha}{2} \cdot \frac{-5+\sqrt{33}}{2 \alpha}
$$

or
$\theta=\frac{\alpha t^{2}}{2}=\frac{\alpha}{2} \cdot \frac{5+\sqrt{33}}{2 \alpha}$
Therefore,

$$
\theta=\frac{-5+\sqrt{33}}{4} \mathrm{rad} \approx 0.19 \mathrm{rad} \quad \text { or } \quad \theta=\frac{5+\sqrt{33}}{4} \mathrm{rad} \approx 2.7 \mathrm{rad}
$$

